

Abstract— As the number of microservice applications

rises, different development methodologies for them are

under consideration. In this manuscript, we propose a

behavior-driven development method for microservice

applications. The proposed method starts with writing

end-to-end tests at the system or application level and then

moves down to the microservice level, where component

and unit tests are written. Next, code that passes these tests

is developed one by one for each level. Once user stories

are covered, our method loops again to integrate negative

tests to achieve holistic testing for the microservices and

the application. Finally, the proposed method is validated

with an application with five microservices. Results

confirm that the proposed method matches with the

generally accepted test pyramid.

Keywords—behavior-driven development, micro-

services, test-driven development.

I. INTRODUCTION

HE development of microservice applications using

Behavior Driven Development (BDD) approach is a yet

undiscovered concept. BDD focuses on defining fine-grained

specifications of the behavior of the targeted software

application [1]. However, as more and more applications are

developed in microservices and BDD is gaining popularity, we

were interested in combining the two and discovering if BDD

is suitable for microservice application development. Towards

this end, we first set out a generic microservice internal design

and interface design and then defined the type of tests that a

microservice application should pass. Afterwards, we defined

the relationship between these tests and the generic

microservice design. Finally, we developed a BDD method for

microservice applications. For evaluation, while developing a

microservice application with the proposed BDD method, we

measured development times for code and tests and test

coverage. The implementation of the proposed BDD method is

publicly available at https://github.com/segment17.

This paper defines test types used for microservice

applications. They are unit tests component tests, and end-to-

end tests resembling a test pyramid with unit tests at the

bottom and end-to-end tests at the top, as shown in Fig.1.

There are also integration tests and contract tests needed to be

written. We consider these tests within unit tests because they

dependent on unit tests and they should be written after unit

tests.

Figure 1. Test pyramid applied to microservices.

The paper also presents a novel BDD implementation of

microservice applications using these test types following a

test-first approach. The proposed BDD method defines each

phase of the software development lifecycle for microservices

concerning this test pyramid. It starts with writing the end-to-

end tests, component tests, and unit tests in Gherkin. As shown

in Fig. 1, the proposed approach first goes from top to bottom

of the pyramid through writing tests, which fail since there are

no code, level by level. When we reach the bottom, we write

the code that will pass these unit tests. Now, the unit tests pass,

and we start to move up in the pyramid. Next, we write code

that will pass the component tests since the component tests

have already been written, and unit code is now available.

Behavior-Driven Development of

Microservice Applications

Tugkan Tuglular, Deniz Egemen Coşkun, Ömer Gülen, Arman Okluoğlu, Kaan Algan

Izmir Institute of Technology,

Urla Izmir, 35430

Turkey

Received: July 22, 2021. Revised: October 8, 2021. Accepted: November 15, 2021.

Published: December 9, 2021.

T

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 130

https://github.com/segment17

Once we clear the component level, we move up to the utmost

level and we write the code that will pass end-to-end tests.

Finally, at the top of the pyramid, we have all tests and the

code ready. With this approach, the developers have always

clear vision what to code. Since it is impossible to come up

with all tests in one iteration, we expect more iterations until

the tests and the code are done. This is what we experienced

with our implementation of the proposed BDD method.

The proposed BDD method for microservice applications

also defines a generic test writing process utilized at every

level of the software development lifecycle for microservices.

The generic test writing process starts with developing

Gherkin scenarios and their test code, and time for this

development is measured. Once the code is completed and all

tests at that level are passed, development time for code and

test coverage are measured and recorded. If test coverage is

below the set value, which was 80% in our case, more tests are

written. Measurement of test and code development times

continues until the expected test coverage value is achieved.

Once we pass the expected test coverage value, then negative

tests are written to develop a holistic test suite along with the

code that passes these negative tests.

Negative tests describe how the software shouldn’t behave,

whereas positive tests in user stories define how the software

should behave. To pass negative tests, more code should be

written until the expected test coverage value is reached. The

development times are again measured and recorded. These

measurements are valuable in software engineering for two

reasons, namely for intra-project and for inter-project

comparisons and predictions. We utilized intra-project

predictions in the development of our microservice application

and here we provide intra-project comparisons in the

evaluation section.

The paper is organized as follows. The following section

gives the background information about the concepts used in

the paper. It describes BDD, Gherkin, Cucumber, and

microservices. Section III explains the proposed method

followed by its implementation on a case. Section V presents

an evaluation of the method approach along with a discussion.

Section VI outlines related work, and the last section

concludes the paper.

II. FUNDAMENTALS

A. Behavior-Driven Development

Historically, behavior-driven development followed test-

driven development (TDD). TDD states that tests should be

written before code, such that tests become the stopping

criteria for writing code [2]. If the code passes all tests, coding

ends. Therefore, test scope and coverage have a critical role in

software development. TDD is usually applied at the method

or class level with unit tests. Since software developers write

unit tests and code, TDD excludes customers, analysts, and

testers from the implementation process. With the idea of agile

development, the inclusion of these parties into the process

became very important. BDD became one of the solutions. In

BDD, analysts with customers, testers, and even developers

collaborate to define what software should do in terms of

software behavior. Application of BDD to software

development does not impose any order such as test-first or

code-first.

B. User Stories

User stories are the starting points of Behavior Driven

Development. User stories usually have the “As a role, I want

to action, so that value” format. User stories are expected to be

written by analysts, customers, and testers together. User

stories gave a general idea of what the software should do but

the details are left to acceptance criteria, which can be written

in natural language or in a language like Gherkin with a preset

template. In this work, we used Gherkin to define acceptance

criteria. Gherkin uses a set of special keywords to give

structure and meaning to executable specifications [3].

Gherkin is a line-oriented language in terms of structure and

each line must be divided by the Gherkin keyword except

feature and scenario descriptions [3]. These lines are called

step.

C. Microservice Applications

Before microservice architecture, monolithic architecture

[4] was the primary style for application design. In monolithic

architecture, the application runs as a single service; therefore,

is tightly coupled and calls for complex development

processes as it grows more and more. When a part of it gets a

spike, the whole system needs to be scaled, and when a part of

it fails, it is more likely that the whole system fails.

Furthermore, when the system needs maintenance, it takes

more time and effort to apply it due to its dependencies and

complexity. In contrast to monolithic architecture,

microservice architecture offers a system that solves these

issues.

Microservice architecture [5] is an architectural style in

which the application is designed as a collection of services.

These services are modular, self-contained, loosely coupled,

and therefore easier to maintain and test. This approach

provides flexibility and agility for the scaling and development

of the application. Each service is free to choose any

technology for its implementation and can be run

independently from each other. One service's failure does not

entail another service's failure, making the system much more

resilient. With tools like Kubernetes, it becomes easier to

orchestrate the services in the cluster so that well known

DevOps issues, such as when and which services to scale up or

down, which portion of the services should use a new version

of a service, or rollback the release on a failure, are easier to

resolve.

III. PROPOSED METHOD

A. Gherkin Step Definitions

As stated previously, every line specifying a setup or an

action in Gherkin is called a step. The functions they are

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 131

mapped to are called Gherkin step definitions. We used the

Cucumber tool to make this mapping. When a Gherkin test is

executed using Cucumber, each step's corresponding step

definition function is being run in the order that they appear in

the Gherkin feature file. The mappings are made by the word

content of the step, so it is impossible to map two exact steps

in different feature files to different functions. This approach is

a plus rather than a drawback because it increases reusability.

Multiple steps with exact wording appear across feature files

in our work, but they all run the same function.

We used tester classes to implement step definitions. We

called these classes ScenarioTester. Gherkin feature files also

allow us to use multiple tags to mark features and scenarios.

We have utilized these tags to specify the type of test the

feature file is, such as unit, component, and end to end, to

quickly subclass ScenarioTester and set up the environment

and step definitions accordingly.

B. Interface Between Microservices

The proposed architecture depends on Kubernetes and

Docker. In the deepest layer, we have the microservice

(explained with detail in the next section) which runs inside a

Docker container. We have dockerized our microservices to

easily upload and run inside Kubernetes using Kubernetes

manifest files as shown in Fig. 2. When the dockerized code is

pushed to the DockerHub, we do not need to carry code from

our repositories to Google Cloud, instead a single line in our

Kubernetes manifests downloads the code from DockerHub

automatically Our Kubernetes cluster is set up inside Google

Kubernetes Engine inside Google Cloud and they use gRPC

protocol for in-cluster communication.

Figure 2. Interface between microservices.

C. Generic Microservice Design

We designed our microservices in four layers, namely

Controller, Service, Gateway, Repository. The controller is the

facade of the microservice. When a request comes to the

microservice via a network, it is directly forwarded to the

controller. In our controllers, the first function that a request

comes to is called a guard function. We chose this naming

because those functions' primary responsibility is to

primitively check the validity of the data in the request body.

These checks can be about whether all required fields are

filled, all data types are correct, and within logical boundaries.

If all the simple validations are passed, the controller forwards

the request data to its service layer. The other use of the

controller happens after it receives the result from the service

layer. Depending on the success or failure of the response, the

controller creates a network response object from data with the

appropriate response code and message. These response object

formats are defined in the microservice's contract tests. This

concept is explained below.

The service layer is where the coordination of the logic is

implemented. Upon receiving the request data from the

controller, the service layer creates the necessary domain

objects, fetches, or saves data using database via repositories,

fetches data, or makes mutating calls using other microservices

via gateways. In a simple microservice, the whole service layer

can be implemented as one mediator class. A domain object

refers to a collection of data and functions concerning one

logical entity used inside the microservice. A domain object

may be implemented as an object-oriented program.

Repositories are the layers between service layer and the

database used by the microservice. The primary use of

repositories is to separate database access from the service

layer code. The coder of the service layer should not know

how to write SQL/NoSQL or even know which type of

database is being used. The repository and service layer coders

should agree upon an interface required to satisfy the service

layer’s needs. Each repository usually concerns one domain

object and has functions aiding in its creation, read, update, or

delete (CRUD) operations. However, repositories can have

functions that concern more than one domain object in

situations that require complex cross-table querying. That said,

wholly separated functions concerning CRUD operations of

two different domain objects should not be in the same

repository. Every domain object that requires data persistence

should have its repository. Mappers inside the repository

handle the formatting of data. For example, a mapper may be

designed to read SQL query results and create the appropriate

Java objects or vice versa. Mappers can be classes, or in small

environments, they can be simple functions.

Gateways are very similar to repositories by their layer

separation characteristic. Gateways are the layer between

Service Layer and other microservices. Their interfaces are

defined to fulfill the needs of the service layer, whether it

requires reading data from another microservice or needs to

trigger a change in another micro-service. The coders of the

service layer do not know the contract between this

microservice and the other microservice. They do not need to

know how to make requests. They only call the gateway's

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 132

asynchronous functions, getX(), without considering that X is

not even in the same microservice. Every microservice

accessed from this microservice needs to have its gateways.

D. Generic Test Design

In the proposed method for BDD of microservice

applications we utilized five type tests, namely unit tests,

integration tests, component tests, contract tests, and end-to-

end tests. Their relationship with microservice layers is shown

in Fig. 3.

Figure 3. Test types applied to microservice parts.

Unit tests are created for each layer. They can be written for

a single method or a single class. The tester/developer decides

how fine-grained a unit test should be written. There is one

caveat about writing unit tests for the controller. Since the

controller is acting as the facade of the microservice, the unit

tests for the controller can be skipped as component tests also

do the same tests. In our architecture, unit tests use mocks as

dependencies of repositories and gateways. For example, if we

are writing a unit test for a function of MatchServiceGateway

of BoxerService, we should use the MockMatchService

Gateway class designed as a subclass of MatchService

Gateway. The only change in this subclass is that it replaces

the real network call and response with mocked in-code data.

This way, while developing BoxerService we can act as if the

MatchService exists even though it does not.

Integration tests are derived tests for repositories and

gateways. They derive from unit tests. In our design, they

share the same test steps. The only difference is that while they

are being executed, the repository/gateway is not mocked and

makes actual calls outside the microservice.

Component tests are written for the endpoints of the

microservice. They make a request and expect a response and

check the changes in the repositories if necessary. Component

tests do not require the implementation of anything outside the

microservice. Instead, they use mock repositories and

gateways. That way, even if the database is not set up or the

other microservices are not written, we can almost wholly

finish implementing and testing our microservice, and as the

external dependencies get ready, all we must do is fill in a

couple of real-world call functions.

Contract tests are derived tests for the other microservices.

The critical point here is that developers and testers of one

microservice write the contract tests for other microservices

that they access. They specify what kind of data they expect

from some endpoints of that microservice. Our architecture has

derived these tests from gateway integration tests because a

gateway integration test for our microservice includes our

expectancies from another microservice.

End-to-end tests are derived tests for the component. They

derive from component tests. In our design, they share the

same test steps. The only difference is that while they are

being executed, the repositories and gateways are not mocked

and make actual calls outside the microservice. In cases where

an end-to-end scenario covers multiple microservices and

needs to check the changes in other microservices’ databases

or states, they include extra steps that reach outside the

microservice.

E. Proposed BDD Method for Microservice Applications

Conventional BDD suggests the following workflow [6]:

1. Identify business features and related user stories

2. Define scenarios and acceptance criteria for the feature

3. Determine steps per scenario

4. Write failing test steps for unimplemented feature

5. Write code to pass the test steps and

6. Refactor the code

7. Produce reports

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 133

The above workflow does not address the test types and

their implementation. Moreover, it does not consider the

application architecture. In this work, we extend this workflow

for microservice architectures and for five test types that we

consider necessary to test a microservice application.

Our proposed extension creates another workflow, namely

microservice BDD workflow. The E2E tests are for system

level, and the remaining four test types are for microservice

level. Although our system level BDD workflow matches the

conventional BDD workflow, the microservice BDD workflow

is different and novel. This microservice BDD workflow

explained in Section I takes the generic microservice design

and its coupled test design explained in Sections III-C and III-

D, respectively, into consideration.

For reporting, we take two measurements for every level in

every microservice: the duration to complete tests and code

and the test coverage rate. We will make measurements in two

levels: microservice level relating component tests and system

level relating end-to-end tests. The microservice level checks

for the validity and completeness of a single microservice,

while the system level checks for end-to-end validity and the

micro-services working together. We separate each level into

two milestones; one when a user story is completed and the

second when a holistic test suite is achieved. The holistic test

suite, where all lines of the code are covered for positive and

negative tests, is expected to result in 80% or more test

coverage.

IV. APPLICATION OF PROPOSED METHOD

We applied the proposed BDD method and developed the

Unlimited Boxing Championship application with four domain

microservices and a front-end microservice, which are shown

in Fig.4. The domain microservices are Authentication

Service, Boxer Service, Standings Service, and Match Service.

The application is a boxing championship information website

with two tables filled with matches and boxers’ standings on

the homepage. There is also a login page for the purposes of

getting admin privileges and a boxer details page which shows

information about a boxer and that boxer’s matches/standing.

Admin can create/edit/delete boxers and matches and these are

performed with modals on the front-end. The user stories are

listed at https://github.com/segment17/ubc/tree/master/stories

and their mapping to Cucumber features are given at

https://github.com/segment17/code-statistics due to space

limitations.

To show the complexity of the implemented application, we

present uses relationships of each microservice. The FrontEnd

microservice uses other microservices as follows:

 AuthService to log in an admin and store the token to

send for requests that re-quire admin access.

 BoxerService to show the list of boxers or the details of a

boxer or any mutating operations from admin.

 MatchService to show the list of matches or the details of

a match or any mutating operations from admin.

 StandingsService to show the standings (leaderboard) of

all boxers.

Figure 4. Microservices of Unlimited Boxing Championship

application.

The BoxerService microservice uses other microservices as

follows:

 AuthService to validate the token in operations such as:

add boxer, update boxer, delete boxer.

 StandingsService to get standing and score information as

well as match data of a boxer.

 MatchService to delete the matches of a boxer upon

deletion of the boxer itself.

MatchService microservice uses other microservices as

follows:

 AuthService to validate the token in operations such as:

add match, update match, delete match.

 BoxerService to validate boxers exist before adding a

match that involves them.

StandingsService microservice uses other microservices as

follows:

 MatchService to fetch all matches to create the

leaderboard.

 MatchService to fetch the matches of the boxer to decide

its score and win/lose count.

To develop microservice-based Unlimited Boxing

Championship application, we utilized Docker, Kubernetes,

and Ambassador Edge Stack for infrastructure, gRPC for

remote procedure calls, Envoy for edge and service proxy,

MySQL for storage, and React, Material-UI, and Protoc (grpc-

web) for frontend.

V. EVALUATION

During the development of the Unlimited Boxing

Championship application, we continuously measured test

coverage at system level for end-to-end tests and at

microservice level for component tests. When we reached

above 80% code coverage for holistic test suite, we stopped

development. The coverage values for end-to-end tests and

component tests are presented in Table I.

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 134

https://github.com/segment17/ubc/tree/master/stories
https://github.com/segment17/code-statistics

Results in Table I confirm the test pyramid in Fig. 1. To

pass tests at the highest level, the tests below need to have

more code coverage.

Table 1. Test coverage for each microservice

Microservice
End-to-End

Test

Component

Tests

AuthService 82.93 95.12

BoxerService 83.15 87.64

MatchService 89.91 93.58

StandingsService 95.56 100.00

We measured user story and holistic test suite completions

as explained in Section III-E. The measurements for each user

story from M1 to H2 are given in Table II in Appendix. In the

table heading, under user story identifier, we also indicated the

microservice, where part or whole of the user story is

implemented. For instance, M1 user story is wholly

implemented in the MatchService whereas B1 user story is

partly implemented in BoxerService and partly in

StandingsService. From user’s point of view, it is not

important where the user story is implemented.

Table II in Appendix also shows the consolidated total

development time and corresponding number of scenarios,

number of steps, and step run counts for each user story. The

formula for step run count is given below:

The total step run count is calculated as follows. For each

Gherkin Scenario, the number of steps is multiplied by the

number of examples, i.e., test data, since the steps should be

executed for each test data once. To observe the relationship

between step run count and total development time we draw

the trendline between them as shown in Fig. 5. They appear

highly correlated.

Figure 5. The relationship between step run count and total

development time.

The configuration of the computer used for measurements is

as follows:

• Model: MacBook Pro 13-inch, 2020

• Processor: 2.3 GHz Quad-Core Intel Core i7

• Memory: 16 GB 3733 MHz LPDDR4X

Since our evaluations are only based on a single

microservice-based application, the evaluations we have

performed may not be representative and generalized to all

microservice-based applications. The proposed BDD method

for microservice-based applications may generate different

results in different architectures and designs. Moreover,

another threat to validity is related to the authors since the

authors developed the microservice-based application.

Another threat to validity is the technologies we utilized in

software development. We utilized them to the best of our

knowledge. There might be better utilization. The same threat

to validity applies to the software we used for measurement in

evaluation. Moreover, the computer and the operating system,

where we took measurements, may be under the effect of some

background processes at the time of measurements.

VI. RELATED WORK

According to Wirfs-Brock [7], BDD is set forth to

encourage incremental design by writing small behavior-driven

specifications, then implementing code that works according to

the specifications. The key to success of BDD is the

executable acceptance tests that describe the expected

behavior of a feature [8]. Behavior-driven specifications have

been written in executable forms to be run by Cucumber [9] or

Gauge [10]. Existing BDD tools were evaluated in [11]. The

tools are categorized with respect to in which type testing they

are used as well as with respect to programming languages,

such as Java and C#. There are also approaches and tools to

automate test generation in BDD, such as [12] and [13]. Bob

and Storer developed a tool called developed behave_nicely,

which automatically generates step implementation functions

from Gherkin [12]. Tuglular and Şensülün extended Gherkin

to automate test generation for software product lines [13].

With agility gaining popularity, BDD is applied

microservice applications. Rahman and Gao [8] present a

reusable automated acceptance testing architecture to address

reusability, auditability, and maintainability concerns raised in

applying BDD to each microservice. They claim that they

propose the first approach addressing these issues.

Zampetti et al. [14] asserted that the availability of

frameworks such as Cucumber makes the application of BDD

possible in practice. However, they claimed that it is unclear to

what extent developers use such frameworks, and whether they

use them for performing BDD. Their study showed that

approximately 27% of the sampled projects use BDD

frameworks. In about 37% of the cases, they found a co-

evolution between scenarios/fixtures and production code.

Aghayi et al. [15] proposed a crowdsourced development

workflow called CrowdMicroservices for microservices based

on BDD. In their proposal, the workflow starting point is the

description of the microservice as a set of endpoints with

paths, requests, and responses. Then, a crowd implements the

endpoints, identifying individual endpoint behaviors that they

test, implement, debug, create new functions, and interact with

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 135

persistence APIs as needed. Our method differs from this

workflow in two respects. First, we start with user stories and

Gherkin step definitions, whereas CrowdMicroservices start

with endpoints with paths, requests, and responses. Second, we

write executable tests first and then the code, whereas, in

CrowdMicroservices, code is written first and then the tests.

VII. CONCLUSION

We propose a behavior-driven development method for

microservice applications. The proposed method starts with

writing tests at the system level and microservice level. Then,

code that passes these tests is developed one by one for each

level. Once user stories are covered, our method loops again to

integrate negative tests to achieve holistic testing for the

microservices and the application.

The proposed method is validated with an application with

five microservices. We developed this application using the

proposed method and reported development time and test

coverage measurements.

REFERENCES

[1] M. G. Cavalcante and J. I. Sales, “The Behavior Driven

Development Applied to the Software Quality Test,”

2019, pp. 1–4.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.

Roberts, “Refactoring: Improving the Design of Existing

Code Addison-Wesley Professional,” Berkeley, CA, USA,

1999.

[3] “Gherkin Reference,” 2019.

https://cucumber.io/docs/gherkin/reference/

[4] P. K. Garg and M. Jazayeri, “Selected, annotated

bibliography on process-centered software engineering

environments,” ACM SIGSOFT Software Engineering

Notes, vol. 19, no. 2, pp. 18–21, 1994.

[5] F. Andre and M.-T. Segarra, “A generic approach to

satisfy adaptability needs in mobile environments,” 2000,

pp. 10-pp.

[6] A. Stec, “Understanding BDD,” Feb. 23, 2021.

https://www.baeldung.com/cs/bdd-guide (accessed Sep.

25, 2021).

[7] R. J. Wirfs-Brock, “Driven to... discovering your design

values,” IEEE Software, vol. 24, no. 1, pp. 9–11, 2007.

[8] M. Rahman and J. Gao, “A reusable automated

acceptance testing architecture for microservices in

behavior-driven development,” 2015, pp. 321–325.

[9] “Cucumber Reference,” 2019.

https://cucumber.io/docs/cucumber/api/

[10] “Gauge: Less Code, Less Maintenance, More Acceptance

Testing.” https://gauge.org (accessed Sep. 27, 2021).

[11] R. K. Lenka, S. Kumar, and S. Mamgain, “Behavior

driven development: Tools and challenges,” 2018, pp.

1032–1037.

[12] T. Storer and R. Bob, “Behave Nicely! Automatic

Generation of Code for Behaviour Driven Development

Test Suites,” 2019, pp. 228–237.

[13] T. Tuglular and S. Şensülün, “SPL-AT Gherkin: A

Gherkin Extension for Feature Oriented Testing of

Software Product Lines,” 2019, vol. 2, pp. 344–349.

[14] F. Zampetti, A. Di Sorbo, C. A. Visaggio, G. Canfora,

and M. Di Penta, “Demystifying the adoption of behavior-

driven development in open source projects,” Information

and Software Technology, vol. 123, p. 106311, 2020.

[15] E. Aghayi, T. D. LaToza, P. Surendra, and S.

Abolghasemi, “Crowdsourced behavior-driven

development,” Journal of Systems and Software, vol. 171,

p. 110840, 2021.

APPENDIX

Table 2. User Story and Holistic Test Suite Development Durations with respect to Gherkin Steps and Run Counts

GOAL

M1

(AS +

MS)

M2

(AS +

MS)

M3

(AS +

MS)

B1

(BS + MS

+ SS)

B2

(AS +

BS)

B3

(AS +

BS)

B4

(AS + BS

+ MS)

A1

(AS)

H1

(MS)

H2

(MS +

SS)

User story 5h 25m 4h 38m 6h 23m 9h 4m 4h 20m 5h 40m 4h 42m 2h 20m 3h 10m 1h 42m

Holistic test suite 5h 21m 4h 23m 2h 23m 5h 55m 2h 42m 2h 24m 3h 43m 1h 40m 1h 35m 1h 29m

Total development

time
10h 46m 9h 1m 8h 46m 14h 59m 7h 2m 8h 4m 8h 25m 4h 0m 4h 45m 3h 11m

Number of scenarios 10 7 10 15 8 8 13 5 2 4

Number of steps 30 22 32 54 29 29 43 14 6 14

Step run count 49 39 61 61 42 42 69 20 6 14

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 136

Tugkan Tuglular received the B.S., M.S., and Ph.D.

degrees in Computer Engineering from Ege University,

Turkey, in 1993, 1995, and 1999.

He worked as a research associate at Purdue University

from 1996 to 1998. He has been with Izmir Institute of

Technology since 2000. After becoming an Assistant Professor

at Izmir Institute of Technology, he worked as Chief

Information Officer in the university from 2003-2007. In

addition to his academic duties, he acted as IT advisor to the

Rector between 2010-2014. In 2018, he became an Associate

Professor in the Department of Computer Engineering of the

same university. He has more than 70 publications and an

active record of duties with international and national

conferences. His current research interests include model-

based testing and software quality with machine learning

support.

Assoc. Prof. Dr. Tuglular is a member of ACM, IEEE

Computer Society, and IEICE.

Contribution of Individual Authors to the Creation

of a Scientific Article (Ghostwriting Policy)
Tugkan Tuglular came out with the idea of the paper and the

proposed method. The proposed method has been improved by

all the authors.

Deniz Egemen Coşkun, Ömer Gülen, Arman Okluoğlu, and

Kaan Algan has implemented the proposed BDD method and

developed a microservice application. They measured

development times for code and tests and test coverage.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative

Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS
DOI: 10.46300/9108.2021.15.20 Volume 15, 2021

E-ISSN: 1998-4308 137

https://creativecommons.org/licenses/by/4.0/deed.en_US

